다양한 딥러닝 프레임워크의 사용법을 익힌다!

딥러닝의 주요 개념을 컬러 그림을 통해 직관적으로 이해한다!


출판사 제이펍

원출판사 고단샤(講談社)

원서명 イラストで学ぶ ディープラーニング(원서 ISBN: 9784061538252) 

저자명 야마시타 타카요시

역자명 심효섭

출판일 2017년 6월 30일

페이지 224쪽

시리즈 I♥A.I. 04

판  형 크라운판변형(170*225*13)

제  본 무선(soft cover)

정  가 23,000원

ISBN 979-11-85890-89-0 (93000)

키워드 인공지능 / 딥러닝 / 심층학습 / 머신러닝 / 신경망 / 텐서플로

분야 컴퓨터공학 / 인공지능


관련 사이트

아마존재팬 도서 소개 페이지

원출판사 도서 소개 페이지


관련 포스트

■ 2017/06/23 - [출간전 책소식] - 통통 딥러닝, 너는 누구인가?


관련 시리즈

I♥A.I 시리즈


관련 도서

엑셀로 배우는 인공지능

알고리즘 중심의 머신러닝 가이드(제2판)

딥러닝 제대로 시작하기

머신러닝 인 액션: 기계 학습 알고리즘으로 데이터 마이닝하기

인공지능 1: 현대적 접근 방식(제3판)

인공지능 2: 현대적 접근 방식(제3판)


관련 파일 다운로드

■ (없음)


교재 검토용 증정 안내

■ 학교 및 학원에서 교재 선정을 위해 책을 파일로 검토해보고자 하시는 분들은 다음의 페이지에서 신청 양식을 작성해주시기 바랍니다. 확인 후 연락을 드리도록 하겠습니다. http://goo.gl/vBtPo3


강의보조 자료

교재로 채택하신 분들은 메일을 보내주시면 아래의 자료를 보내드리겠습니다: jeipubmarketer@gmail.com

■ 본문의 그림과 표


샘플 PDF(차례, 옮긴이 머리말, 머리말, 베타리더 후기, 1장 '서론')

그림과수식으로배우는통통딥러닝_sample.pdf


정오표 페이지

■ (등록되는 대로 링크를 걸어드리겠습니다)

 

도서구매 사이트(가나다순)

[강컴]   [교보문고]   [도서11번가]   [반디앤루니스]   [알라딘]   [예스이십사]   [인터파크]


도서 소개

다양한 딥러닝 프레임워크의 사용법을 익힌다!

딥러닝의 주요 개념을 컬러 그림을 통해 직관적으로 이해한다!


이 책은 딥러닝의 개념을 소개하는 것으로 시작해 딥러닝에 사용되는 여러 기법을 안내하고 있다. 딥러닝을 처음 배우려는 입문자부터 연구하는 대학생, 실제로 연구개발을 하는 실무자까지 다양한 독자를 이해시키기 위해 그림과 수식을 사용했다. 입문자들은 수식과 함께 나오는 그림을 통해 이해를 높일 수 있을 것이다. 


딥러닝의 개념이나 기법을 이론적으로 설명하는 데 그치지 않고 실제로 활용할 수 있도록 다양한 딥러닝 도구도 소개하고 있다. 특히, 텐서플로와 카페 등 오픈소스로 공개된 인기 있는 도구들의 설치부터 활용 사례까지 포함하고 있다.


이 책의 주요 내용

● 딥러닝

    딥러닝이란 무엇인가?

● 신경망

    퍼셉트론 / 다층 퍼셉트론 / 역전파법 / 오차 함수와 활성화 함수 / 우도 함수 / 확률적 경사 강하법 / 학습률

● 합성곱 신경망

    합성곱층 / 풀링층 / 전결합층 / 출력층

● 제약 볼츠만 머신

    홉필드 네트워크 / 볼츠만 머신 / 딥 빌리프 넷

● 자기부호화기

    디노이징 자기부호화기 / 희소 자기부호화기 / 적층 자기부호화기

● 일반화 성능을 향상시키는 방법

    학습 표본 / 전처리 / 활성화 함수 / 드롭아웃 / 드롭커넥트

● 딥러닝을 위한 도구

    Theano / Pylearn2 / Caffe / DIGITS / Chainer / TensorFlow


지은이 소개

야마시타 타카요시(山下 隆義)

1978년 고베에서 출생했으며, 1988년 고베시립공업고등전문학교 공학과를 졸업하였다. 2002년 나라첨단과학기술대학원대학교 정보과학연구과 박사전기과정을 수료하였고, 같은 해에 옴론 주식회사에 입사하였다. 옴론에서는 주로 영상에서 사람의 얼굴을 실시간으로 인식하는 소프트웨어의 연구와 개발을 담당하였다. 2011년에는 회사 근무와 병행하여 츄부대학 대학원 공학연구과 박사후기과정을 수료(공학박사)하였다. 2014년부터는 츄부대학 공학부 정보공학과 강사로 나가는 한편, 인간과 같은 인지를 지향하는 동영상 처리, 패턴 인식, 머신러닝 연구를 수행하고 있다. SSII 타카기상, IEICE 정보시스템학회 논문상, IEICE PRMU 연구회 연구장려상 등을 수상하였으며, SSII 및 MIRU 등에서 딥러닝 세미나의 강사도 맡고 있다.


옮긴이 소개

심효섭

연세대학교 문헌정보학과를 졸업했고, 모교 중앙도서관과의 인연으로 도서관 솔루션 업체에서 일하게 되면서 개발을 시작하였다. 네이버에서는 웹 서비스 개발 업무를 맡았으며, 웹 서비스 외에도 머신러닝에 대한 학습도 꾸준히 하고 있다. 한편, 최근에는 회사에 속하지 않고 지속 가능한 삶에 골똘하고 있다. 옮긴 책으로는 《딥 러닝 제대로 시작하기》가 있다.


차례

CHAPTER 01 서론 1

1.1 딥러닝이란 2

1.2 주목받게 된 계기 3

1.3 왜 딥러닝인가 6

1.4 딥러닝이란 무엇인가 7

1.5 이 책의 구성 8


CHAPTER 02 신경망 11

2.1 신경망의 역사 12

2.2 매컬러-피츠의 신경회로망 모형 14

2.3 퍼셉트론 16

2.4 다층 퍼셉트론 18

2.5 역전파법 19

2.6 오차 함수와 활성화 함수 30

2.7 우도 함수 32

2.8 확률적 경사 하강법 33

2.9 학습률 35

2.10 정리 35


CHAPTER 03 합성곱 신경망 37

3.1 합성곱 신경망의 구성 38

3.2 합성곱층 40

3.3 풀링층 41

3.4 전결합층 42

3.5 출력층 43

3.6 신경망의 학습 방법 43

3.7 정리 50


CHAPTER 04 제약 볼츠만 머신 51

4.1 홉필드 네트워크 52

4.2 볼츠만 머신 57

4.3 제약 볼츠만 머신 61

4.4 대조적 발산 63

4.5 딥 빌리프 넷 66

4.6 정리 68


CHAPTER 05 자기부호화기 69

5.1 자기부호화기 70

5.2 디노이징 자기부호화기 73

5.3 희소 자기부호화기 74

5.4 적층 자기부호화기 79

5.5 사전 훈련에서의 이용 79

5.6 정리 80


CHAPTER 06 일반화 성능을 향상시키기 위한 방법 81

6.1 학습 표본 82

6.2 전처리 89

6.3 활성화 함수 94

6.4 드롭아웃 97

6.5 드롭커넥트 98

6.7 정리 101


CHAPTER 07 딥러닝을 위한 도구 103

7.1 딥러닝 개발환경 104

7.2 Theano 104

7.3 Pylearn2 112

7.4 Caffe 122

7.5 학습 시스템 DIGITS 141

7.6 Chainer 149

7.7 텐서플로 164

7.8 정리 179


CHAPTER 08 딥러닝의 현재와 미래 181

8.1 딥러닝의 응용 사례 182

8.2 딥러닝의 미래 198

8.3 정리 200


참고문헌 202

찾아보기 209




저작자 표시 비영리 동일 조건 변경 허락
신고

댓글을 달아 주세요



티스토리 툴바