이 책은 현재 절판입니다. 그간 읽어주신 독자들께 감사드립니다.알파고를 통해 인간의 지혜를 넘어선 한 수의 비밀을 탐구한다!
도서구매 사이트(가나다순)
전자책 구매 사이트(가나다순)
출판사 제이펍
원출판사 SHOEISHA
원서명 最強囲碁AI アルファ碁 解体新書 増補改訂版(원서 ISBN: 9784798157771)
저자명 오츠키 토모시
역자명 정인식
출판일 2019년 7월 25일
페이지 332쪽
시리즈 I♥A.I. 17(제이펍의 인공지능 시리즈 17)
판 형 170*225*17
제 본 무선(soft cover)
정 가 26,000원
ISBN 979-11-88621-64-4(93000)
키워드 알파고 / 알파고 제로 / 딥 러닝 / 강화 학습 / 몬테카를로 트리 탐색 / SL 정책 네트워크
분 야 인공지능 / 딥 러닝 / 강화 학습
관련 사이트■
■ 아마존 도서 소개 페이지■ 《네이처》의 알파고 논문 페이지관련 포스트
■ 2019/07/15 - [출간전 책소식] - 바둑 AI '알파고'에 숨어 있는 구조와 원리를 배웁시다!
관련 시리즈■
관련 도서■ 심층 학습(Deep Learning)■ 패턴 인식과 머신 러닝
강의보조자료 다운로드교재로 채택하신 분들은 메일을 보내주시면 아래의 자료를 보내드리겠습니다: jeipubmarketer@gmail.com■ 본문의 그림과 표
샘플 PDF(차례, 역자 머리말, 이 책에 대하여, 감수자의 글, 바둑 AI의 역사, 베타리더 후기, 1장 '알파고의 등장' 일부, 3장 '강화 학습 - 바둑 AI는 경험을 배운다' 일부, 5장 '알파고의 완성' 일부)
정오표 페이지
■ (등록되는 대로 링크를 걸어 드리겠습니다)
도서구매 사이트(가나다순)
전자책 구매 사이트(가나다순)
도서 소개
알파고를 통해 인간의 지혜를 넘어선 한 수의 비밀을 탐구한다!
인공지능은 어떻게 인간의 두뇌를 뛰어넘도록 설계되고 진화했을까?
이세돌을 비롯한 많은 프로 바둑기사를 제압한 알파고를 통해 인공지능의 구조와 원리를 파헤친다!
2016년 3월, 이세돌 9단과 알파고의 세기의 대전이 열렸다. 결과는 4승 1패로 알파고의 승리. 2017년 5월에는 커제 9단과 알파고의 대국이 열렸다. 결과는 알파고의 3연승. 이후 알파고의 진화는 계속되었고, 2017년 10월에는 알파고 제로에 관한 논문이 발표되었다. 그리고, 알파고 제로는 기존 알파고에 100연승하였다. 이렇듯 인공지능 기술은 일취월장하고 있으며, 특히 머신 러닝, 딥 러닝, 강화 학습 분야에 주력하고 있다.
저자 오츠키 토모시는 《네이처》에 게재된 알파고 및 알파고 제로에 관한 난해한 학술 논문을 읽고 해석해서 알파고에 이용되는 딥 러닝, 강화 학습, 몬테카를로 트리 탐색과 알파고 제로에 이용되는 듀얼 네트워크의 구조에 대해 알기 쉽게 설명했다. 이 책을 통해 최신 인공지능 기술이 알파고 및 알파고 제로에 어떻게 이용되는지 파악하고, 이를 다양한 연구 개발에 활용하기 위한 아이디어를 얻을 수 있을 것이다.
이 책의 대상 독자
· 인공지능 개발자 및 연구자
· 게임 AI 개발자
· 알파고에 관심 많은 컴퓨터 전공자
지은이 소개
오츠키 토모시
2001년에 도쿄대학 계수공학과를 졸업하였으며, 2003년에 도쿄대학원의 신영역 창성과학연구과의 석사 과정을 수료하였다. 이후 머신러닝 및 최적화 등의 연구와 개발에 참여하였다. 2001년부터 게임 AI 프로그래머로서 바둑 및 장기 프로그램 개발에 참여하였는데, 그가 개발한 장기 프로그램 ‘오쇼기’는 2009년 세계 컴퓨터 장기 선수권 대회에서 2위를 차지했다. 한편, 그는 정보 이공학 박사 학위 소유자이기도 하다.
옮긴이 소개
정인식
숭실대학교에서 전자계산학을 전공하였다. 사회 초년생 시절 자바에 심취해 현대정보기술에서 웹 애플리케이션을 개발하였고, 그 후 이동통신 단말기 분야로 옮겨 휴대전화 단말기의 부가서비스 개발 업무를 진행하였다. 그리고 일본 키스코 모바일사업부의 팀장을 거쳐, 일본 교세라의 북미향 휴대전화기 개발에 참여하였다. 지금은 일본의 주요 이동통신사에서 업무 프로세스 개선을 위한 IT 컨설팅 및 데이터 분석 관련 도구를 개발하고 있다. 또한, 《빅데이터를 지탱하는 기술》, 《유니티 5로 만드는 3D/2D 스마트폰 게임 개발》, 《자바 마스터 북》, 《자바스크립트 마스터 북》 등을 비롯해 10여 종의 책을 번역하였다.
CHAPTER 1 알파고의 등장 1
1.1 게임 AI의 역사와 발전 2
1.1.1 앨런 튜링과 AI 2
1.2 천재 데미스 하사비스의 등장 5
1.2.1 신동 데미스 하사비스 5
1.3 알파고의 활약 7
1.3.1 알파고의 활약 7
1.4 바둑 AI의 기초 13
1.4.1 바둑의 규칙 13
1.4.2 바둑 AI를 구현한다는 것은 무엇인가? 16
1.4.3 ‘다음의 한 수’ 태스크 20
1.4.4 ‘다음의 한 수’ 태스크의 어려운 점 21
1.4.5 머신 러닝을 이용한 ‘다음의 한 수’ 태스크 22
1.4.6 알파고의 롤 아웃 정책 학습 26
1.5 정리 30
CHAPTER 2 딥 러닝 – 바둑 AI는 순간적으로 수를 떠올린다 31
이 장에서 설명할 내용 32
2.1 딥 러닝이란? 34
2.1.1 AI는 사람의 직관을 실현할 수 있을까? 34
2.2 필기체 숫자 인식의 예 42
2.2.1 필기체 숫자 인식이란? 42
2.2.2 필기체 숫자 인식의 데이터 세트 ‘MNIST’ 42
2.2.3 신경망을 사용한 필기체 숫자 인식 44
2.2.4 필기체 숫자 인식에 대한 컨볼루션 신경망 47
2.2.5 다단계의 신경망에서도 유효한 활성화 함수 51
2.2.6 오류 역전파 방법에 기초한 CNN의 필터 가중치 학습 54
2.2.7 화상 처리 CNN의 발전 60
2.3 알파고의 컨볼루션 신경망 64
2.3.1 알파고의 컨볼루션 신경망 64
2.3.2 ‘다음의 한 수’ 태스크와 화상 인식의 유사성 65
2.3.3 바둑의 수를 선택하는 CNN - SL 정책 네트워크 66
2.3.4 SL 정책 네트워크의 입력 48채널의 특징 71
2.3.5 SL 정책 네트워크의 컨볼루션 계산 예 75
2.3.6 SL 정책 네트워크의 계산량 77
2.3.7 SL 정책 네트워크의 학습용 데이터 획득 81
2.3.8 SL 정책 네트워크의 학습 기법 84
2.3.9 SL 정책 네트워크의 학습 결과 87
2.3.10 국면의 유리 불리를 예측하는 CNN(밸류 네트워크) 90
2.4 Chainer로 CNN 학습시키기 93
2.4.1 MNIST의 신경망 학습 부분 작성하기 93
2.4.2 SL 정책 네트워크의 학습 부분 작성하기 96
2.5 정리 100
CHAPTER 3 강화 학습 – 바둑 AI는 경험을 배운다 101
이 장에서 설명할 내용 102
3.1 강화 학습이란? 104
3.1.1 어떻게 경험에서 배울 것인가? 104
3.2 강화 학습의 역사 108
3.2.1 강화 학습 108
3.3 멀티 암드 밴딧 문제 112
3.3.1 강화 학습의 사례 112
3.3.2 UCB1 알고리즘 116
3.4 미로를 풀기 위한 강화 학습 118
3.4.1 4 × 4칸으로 이루어진 미로 118
3.4.2 가치 기반의 방식: Q 학습을 통해 미로 해결 120
3.4.3 정책 기반 방식: 정책 경사법을 통해 미로 해결 124
3.5 비디오 게임 조작 스킬을 얻기 위한 강화 학습 127
3.5.1 DQN 127
3.6 알파고의 강화 학습 131
3.6.1 알파고의 강화 학습 131
3.6.2 정책 경사법에 근거하는 강화 학습 134
3.6.3 RL 정책 네트워크의 성능 137
3.6.4 밸류 네트워크 학습용의 데이터 작성 기법 138
3.7 정리와 과제 143
CHAPTER 4 탐색 - 바둑 AI는 어떻게 예측할까? 145
이 장에서 설명할 내용 146
4.1 2인 제로섬 유한 확정 완전 정보 게임 148
4.1.1 어떻게 수를 예측할까? 148
4.2 게임에서의 탐색 153
4.2.1 SL 정책 네트워크 153
4.3 기존의 게임 트리 탐색(민맥스 트리 탐색) 155
4.3.1 ‘완전 탐색’의 개념 155
4.3.2 탐색 포인트 – 가지치기와 평가 함수 162
4.4 바둑에서의 몬테카를로 트리 탐색 165
4.4.1 몬테카를로 방법 165
4.4.2 바둑에서의 몬테카를로 방법: 원시 몬테카를로 166
4.4.3 몬테카를로 트리 탐색 170
4.4.4 몬테카를로 트리 탐색의 결과와 최종적인 수 탐색 179
4.4.5 몬테카를로 트리 탐색의 개선 182
4.5 몬테카를로 트리 탐색의 성공 요인과 과제 185
4.5.1 CrazyStone과 Gnu Go 185
4.5.2 단 1줄로 다시 태어난 CrazyStone 186
4.6 정리 188
4.6.1 탐색 188
CHAPTER 5 알파고의 완성 189
5.1 알파고의 설계도 190
5.1.1 알파고의 재료 190
5.1.2 전체를 제어하는 AI 192
5.2 비동기 정책 가치 갱신 몬테카를로 트리 탐색 195
5.2.1 세 가지 정책의 특징 195
5.2.2 비동기 정책 가치 갱신 몬테카를로 트리 탐색 197
5.2.3 APV-MCTS의 선택 처리 200
5.2.4 APV-MCTS의 전개 처리 201
5.2.5 APV-MCTS의 평가 처리 201
5.2.6 APV-MCTS의 갱신 처리 202
5.3 대량 CPU·GPU의 이용 204
5.3.1 대량의 CPU와 GPU에 의한 병렬 탐색 204
5.3.2 로크리스 해시 206
5.3.3 가상 손실 208
5.4 알파고의 강력함 211
5.4.1 몬테카를로 트리 탐색, 밸류 네트워크, 정책 네트워크의 조합 효과 211
CHAPTER 6 알파고에서 알파고 제로로 213
6.1 시작에 앞서 214
6.2 알파고 제로에서의 딥 러닝 216
6.2.1 듀얼 네트워크의 구조 218
6.2.2 듀얼 네트워크의 학습 224
6.2.3 알파고 제로의 딥 러닝 정리 227
6.3 알파고 제로에서의 몬테카를로 트리 탐색 228
6.3.1 알파고 제로의 몬테카를로 트리 탐색 개요 228
6.3.2 몬테카를로 트리 탐색의 플로 차트 230
6.3.3 알파고 제로의 몬테카를로 트리 탐색 정리 233
6.4 알파고 제로에서의 강화 학습 234
6.4.1 알파고 제로의 강화 학습 기법 236
6.4.2 강화 학습의 계산 시간 242
6.4.3 알파고 제로의 강화 학습은 무엇을 하고 있나? 245
6.4.4 강화 학습의 효과 247
6.4.5 알파고 제로의 강화 학습 정리와 그 후의 진전 248
6.5 알파고 제로의 강력함 251
6.6 알파고 제로는 지식 없이 만들 수 있을까? 253
6.7 알파고나 알파고 제로에 약점은 있을까? 255
6.7.1 알파고와 알파고 제로의 약점 가능성 255
6.8 알파고 제로의 향후 미래 257
6.8.1 바둑계의 미래는 어떻게 될까? 257
6.8.2 AI의 과제 258
Appendix 1 수식에 관하여 263
A1.1 콘볼루션 신경망의 학습 법칙 도출 264
A1.1.1 SL 정책 네트워크의 학습 법칙 도출 264
A1.1.2 밸류 네트워크의 학습 법칙 도출 265
A1.1.3 듀얼 네트워크의 손실 함수에 관한 보충 267
A1.2 강화 학습의 학습 법칙 도출 269
A1.2.1 파알고의 RL 정책 네트워크 강화 학습 방법의 학습 법칙 도출 269
A1.2.2 미로를 예로 든 정책 경사법의 학습 법칙 도출 271
Appendix 2 바둑 프로그램용 UI 소프트웨어 GoGui 및 GoGui용 프로그램 DeltaGo 이용 방법 273
A2.1 DeltaGo란? 274
A2.1.1 DeltaGo의 특징 274
A2.2 GoGui의 설치 및 GoGui용 프로그램 DeltaGo 이용 방법 276
A2.2.1 DeltaGo 다운로드와 압축 풀기 276
찾아보기 289
'도서 소개' 카테고리의 다른 글
브레인 이미테이션 (0) | 2019.08.23 |
---|---|
허교수의 ARM Mbed 프로그래밍 입문 (0) | 2019.08.01 |
코딩 강화 파이썬: 단계별 구성으로 단단하게 배우는 (0) | 2019.06.26 |
해들리 위컴의 R 패키지:코드를 작성하고, 테스트하고, 문서화하고, 공유하라 (0) | 2019.06.03 |
R로 배우는 텍스트 마이닝: tidytext 라이브러리를 활용하는 방법 (0) | 2019.06.03 |